ar X iv : m at h / 02 01 22 7 v 2 [ m at h . SP ] 1 3 Fe b 20 03 PROJECTION METHODS FOR DISCRETE SCHRÖDINGER OPERATORS

نویسنده

  • L. BOULTON
چکیده

Let H be the discrete Schrödinger operator Hu(n) := u(n − 1) + u(n + 1) + v(n)u(n), u(0) = 0 acting on l(Z) where the potential v is real-valued and v(n) → 0 as n → ∞. Let P be the orthogonal projection onto a closed linear subspace L ⊂ l(Z). In a recent paper E.B. Davies defines the second order spectrum Spec2(H,L) of H relative to L as the set of z ∈ C such that the restriction to L of the operator P (H − z)P is not invertible within the space L. The purpose of this article is to investigate properties of Spec2(H,L) when L is large but finite dimensional. We explore in particular the connection between this set and the spectrum of H . Our main result provides sharp bounds in terms of the potential v for the asymptotic behaviour of Spec2(H,L) as L increases towards l(Z).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 02 01 22 7 v 1 [ m at h . SP ] 2 3 Ja n 20 02 D - S PROJECTION METHODS FOR DISCRETE SCHRÖDINGER OPERATORS

Let H be the discrete Schrödinger operator Hu(n) := u(n − 1) + u(n + 1) + v(n)u(n), u(0) = 0 acting on l(Z) where the potential v is real-valued and v(n) → 0 as n → ∞. Let P be the orthogonal projection onto a closed linear subspace L ⊂ l(Z). In a recent paper E.B. Davies defines the second order spectrum Spec2(H,L) of H relative to L as the set of z ∈ C such that the restriction to L of the op...

متن کامل

ar X iv : m at h / 03 02 33 9 v 1 [ m at h . A P ] 2 7 Fe b 20 03 NONLINEAR SCHRÖDINGER EQUATIONS WITH STARK POTENTIAL

We study the nonlinear Schrödinger equations with a linear potential. A change of variables makes it possible to deduce results concerning finite time blow up and scattering theory from the case with no potential.

متن کامل

ar X iv : m at h / 02 12 02 9 v 2 [ m at h . Q A ] 1 3 Fe b 20 03 GENERALIZED LAMÉ OPERATORS

We introduce a class of multidimensional Schrödinger operators with elliptic potential which generalize the classical Lamé operator to higher dimensions. One natural example is the Calogero–Moser operator, others are related to the root systems and their deformations. We conjecture that these operators are algebraically integrable, which is a proper generalization of the finite-gap property of ...

متن کامل

ar X iv : m at h / 98 03 12 9 v 1 [ m at h . SP ] 2 6 M ar 1 99 8 SEMI - CLASSICAL STATES FOR NON - SELF - ADJOINT SCHRÖDINGER OPERATORS

We prove that the spectrum of certain non-self-adjoint Schrödinger operators is unstable in the semi-classical limit h → 0. Similar results hold for a fixed operator in the high energy limit. The method involves the construction of approximate semi-classical modes of the operator by the JWKB method for energies far from the spectrum.

متن کامل

ar X iv : m at h / 03 02 15 0 v 1 [ m at h . SG ] 1 2 Fe b 20 03 MELROSE – UHLMANN PROJECTORS , THE METAPLECTIC REPRESENTATION AND SYMPLECTIC CUTS

By applying the symplectic cutting operation to cotangent bundles, one can construct a large number of interesting symplectic cones. In this paper we show how to attach algebras of pseudodifferential operators to such cones and describe the symbolic properties of the algebras.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008